30+ days ago - req17720

Physics Data Scientist

Research & development

Physics

In a nutshell

Location

Veldhoven, Netherlands

Team

Research & development

Experience

0-2 years

Degree

PhD

Job Category

Physics

Travel

20%

Introduction

Do you enjoy solving algorithm design problems for semiconductor metrology industry, with demanding time, accuracy, and memory requirements ? Do you like to use your creativity, your in-depth knowledge of data engineering and machine learning principles, and your hands-on experience with practical physics-problem solving, being part of a highly talented group of algorithm experts ?

Within ASML,the sector Development & Engineering is responsible for the development, specification and design of new ASML products. The Business Line Applications provides integrated solutions with computational, metrology and control technology. These solutions extend and improve the performance of lithography and patterning products for the semiconductor industry.

Job Mission

The Algorithms and Physical Modeling group covers the development of models and methods required to infer physical model parameters from optical scatterometry data, productized with the YieldStar product. Relevant new metrics, as well as new measurement functions, with optimum performance characteristics using the raw acquisitions are identified, designed and implemented. The group secures the ASML Competence of Applied Mathematics for Parameter Estimation.

Job Description

  • Propose solutions for statistically correct parameter inference, machine learning and optimization algorithms, and system calibrations, which improve semiconductor metrology and enable high-volume fab control solutions.
  • Communicate crystal clearly on algorithm solutions, and architectures to stakeholders, without omitting the essentials.
  • Act at the interface to colleague metrology and data science groups, and SW groups in ASML, enabling modern cloud development architectures as environment for machine-learning and deep-learning solutions in our group.
    Drive for quality of code, database architecture and data flow, and help direct colleagues in structuring code for this.
  • Working as a team with similar-minded people, benefitting from each other’s specific competences.
  • Design and realize fully functional proof-of-concept subsystems on the edge of system specifications, costs and project planning, thereby contributing directly to products for busines2business customers world-wide.
  • Review technical analyses from the team, and structure team contributions keeping the overview.
  • technical-team identity in communication with other departments.
  • Contribute to technical product roadmaps and generate intellectual property protecting ASML products, while developing the best metrology solutions and a well-founded vision on semiconductor metrology.

Education

Ph.D. in Computer Science, Physics, Applied Mathematics or Electrical Engineering

Experience

  • Experience in machine-learning, robust optimization, data-driven analysis, and their application to physical problems
  • Excellence in numerically stable modeling with physically sound insights, and modular code development
  • Affinity with (experience in setting up) cloud development architectures as environment for machine-learning and deep-learning techniques, and affinity with driving the quality of the database architecture
  • Drive for structuring the scripting code, architecture in the cluster, and be energized by helping colleagues in this
  • Fluency in the language and standards of data structure design, and awareness of compatibility with other software's
  • Ability to explain complex physical models, architectures and algorithms in a crisp way, without omitting the essentials
  • Sound understanding of the fundamentals such as linear algebra, probability theory, and (deep) learning methods.

Personal skills

  • Drive creative solutions -within the bigger picture- with the product and customer in mind
  • Decisive and self-initiating in an ambiguous environment
  • Team worker, and ability to influence without power
  • Pragmatic approach and pro-active attitude, with result focus and a ‘can do’ spirit

Context of the position

This position is available withinthe Algorithms and Physical Modeling group. the group covers the development of models and methods required to infer physical model parameters from optical scatterometry data, productized with the YieldStar product.

Other information

Keywords: parameter inference, physics, software, cloud development, dataflow, (non-)convex and robust optimization, deep learning, (un)supervised and reinforcement learning, neural network, inverse problem, physical calibration, mathematics, optics, regression, information theory.